Optimization with Sparsity-Inducing Penalties

-15% su kodu: ENG15
163,22 
Įprasta kaina: 192,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
163,22 
Įprasta kaina: 192,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 192.0200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate nonsmooth norms. Optimization with Sparsity-Inducing Penalties presents optimization tools and techniques dedicated to such sparsity-inducing penalties from a general perspective. It covers proximal methods, block-coordinate descent, reweighted ¿2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provides an extensive set of experiments to compare various algorithms from a computational point of view. The presentation of Optimization with Sparsity-Inducing Penalties is essentially based on existing literature, but the process of constructing a general framework leads naturally to new results, connections and points of view. It is an ideal reference on the topic for anyone working in machine learning and related areas.

Informacija

Autorius: Francis Bach, Rodolphe Jenatton, Julien Mairal,
Leidėjas: Now Publishers Inc
Išleidimo metai: 2011
Knygos puslapių skaičius: 124
ISBN-10: 160198510X
ISBN-13: 9781601985101
Formatas: 234 x 156 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Optimization with Sparsity-Inducing Penalties“

Būtina įvertinti prekę

Goodreads reviews for „Optimization with Sparsity-Inducing Penalties“