Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

On the Synthesis of the Distribution amongst the Integers of the Prime Number Counting Function, pi(k), viewed as a Geometric Object

-15% su kodu: ENG15
19,51 
Įprasta kaina: 22,95 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
19,51 
Įprasta kaina: 22,95 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 22.9500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Academic Paper from the year 2023 in the subject Mathematics - Analysis, grade: 2.00, , language: English, abstract: A method is devised in which the prime number counting function, pi(k) is viewed as having the properties of a staircase. The terminology appropriate to a staircase is used to describe the parts of the distribution amongst the integers. Strings of limited extent of consecutive numbers which may contain prime numbers are generated from an iterative equation which contains Gauss' prime number counting function. In honour of Gauss we call these strings of numbers, Gauss strings. , and they are used in the construction of the staircase. Further, we show that the prime number counting function may be represented in number space by an infinite set of connected trapezia, the individual areas of which are numerically equal to the gap between the primes that are situated on two of the borders of any given trapezium.

Informacija

Autorius: William Fidler
Leidėjas: GRIN Verlag
Išleidimo metai: 2023
Knygos puslapių skaičius: 20
ISBN-10: 3346835669
ISBN-13: 9783346835666
Formatas: 210 x 148 x 2 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „On the Synthesis of the Distribution amongst the Integers of the Prime Number Counting Function, pi(k), viewed as a Geometric Object“

Būtina įvertinti prekę

Goodreads reviews for „On the Synthesis of the Distribution amongst the Integers of the Prime Number Counting Function, pi(k), viewed as a Geometric Object“