Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

0 Mėgstami
0Krepšelis

On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory

-20% su kodu: BOOKS
203,26 
Įprasta kaina: 254,08 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
203,26 
Įprasta kaina: 254,08 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
2025-03-31 203.26 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The gathering and storage of data indexed in space and time are experiencing unprecedented growth, demanding for advanced and adapted tools to analyse them. This thesis deals with the exploration and modelling of complex high-frequency and non-stationary spatio-temporal data. It proposes an efficient framework in modelling with machine learning algorithms spatio-temporal fields measured on irregular monitoring networks, accounting for high dimensional input space and large data sets. The uncertainty quantification is enabled by specifying this framework with the extreme learning machine, a particular type of artificial neural network for which analytical results, variance estimation and confidence intervals are developed. Particular attention is also paid to a highly versatile exploratory data analysis tool based on information theory, the Fisher-Shannon analysis, which can be used to assess the complexity of distributional properties of temporal, spatial and spatio-temporal data sets. Examples of the proposed methodologies are concentrated on data from environmental sciences, with an emphasis on wind speed modelling in complex mountainous terrain and the resulting renewable energy assessment. The contributions of this thesis can find a large number of applications in several research domains where exploration, understanding, clustering, interpolation and forecasting of complex phenomena are of utmost importance.

Informacija

Autorius: Fabian Guignard
Serija: Springer Theses
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2022
Knygos puslapių skaičius: 176
ISBN-10: 3030952304
ISBN-13: 9783030952303
Formatas: 241 x 160 x 16 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory“

Būtina įvertinti prekę

Goodreads reviews for „On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory“