Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

On deeply learning features for automatic person re-identification

-15% su kodu: ENG15
61,04 
Įprasta kaina: 71,81 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
61,04 
Įprasta kaina: 71,81 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 71.8100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The automatic person re-identification problem resides in matching an unknown person image to a database of previously labeled images of people. Comparison among two image features is commonly accomplished by distance metrics. Although features and distance metrics can be handcrafted or trainable, the latter type has demonstrated more potential to breakthroughs in achieving state-of-the-art performance over public data sets. A recent paradigm that allows to work with trainable features is deep learning. In this book, we present a novel deep learning strategy, so called coarse-to-fine learning (CFL), as well as a novel type of feature - the convolutional covariance features (CCF), for person re-identification. CFL is based on the human learning process. After extracting the convolutional features via CFL, those ones are then wrapped in covariance matrices, composing the CCF. The performance of the proposed framework was assessed comparatively against 18 state-of-the-art methods by using public data sets (VIPeR, i-LIDS, CUHK01 and CUHK03), achieving superior performance.

Informacija

Autorius: Alexandre Franco, Luciano Oliveira,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2017
Knygos puslapių skaičius: 112
ISBN-10: 3330029102
ISBN-13: 9783330029101
Formatas: 220 x 150 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „On deeply learning features for automatic person re-identification“

Būtina įvertinti prekę

Goodreads reviews for „On deeply learning features for automatic person re-identification“