Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Observer Design for Nonlinear Dynamical Systems: Differential Geometric Methods

-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 220.2000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms. The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented. Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.

Informacija

Autorius: Gang Zheng, Driss Boutat,
Serija: Lecture Notes in Control and Information Sciences
Leidėjas: Springer International Publishing
Išleidimo metai: 2022
Knygos puslapių skaičius: 208
ISBN-10: 3030737446
ISBN-13: 9783030737443
Formatas: 235 x 155 x 12 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Observer Design for Nonlinear Dynamical Systems: Differential Geometric Methods“

Būtina įvertinti prekę

Goodreads reviews for „Observer Design for Nonlinear Dynamical Systems: Differential Geometric Methods“