Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Normally Hyperbolic Invariant Manifolds in Dynamical Systems

-15% su kodu: ENG15
70,11 
Įprasta kaina: 82,48 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
70,11 
Įprasta kaina: 82,48 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 82.4800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.

Informacija

Autorius: Stephen Wiggins
Serija: Applied Mathematical Sciences
Leidėjas: Springer New York
Išleidimo metai: 2013
Knygos puslapių skaičius: 208
ISBN-10: 1461287340
ISBN-13: 9781461287346
Formatas: 235 x 155 x 12 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Normally Hyperbolic Invariant Manifolds in Dynamical Systems“

Būtina įvertinti prekę