Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Nonlinear Oscillations of Hamiltonian PDEs

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. After introducing the reader to classical finite-dimensional dynamical system theory, including the Weinstein¿Moser and Fadell¿Rabinowitz bifurcation results, the author develops the analogous theory for nonlinear wave equations. The theory and applications of the Nash¿Moser theorem to a class of nonlinear wave equations is also discussed together with other basic notions of Hamiltonian PDEs and number theory. The main examples of Hamiltonian PDEs presented include: the nonlinear wave equation, the nonlinear Schrödinger equation, beam equations, and the Euler equations of hydrodynamics. This text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.

Informacija

Autorius: Massimiliano Berti
Serija: Progress in Nonlinear Differential Equations and Their Applications
Leidėjas: Birkhäuser Boston
Išleidimo metai: 2007
Knygos puslapių skaičius: 200
ISBN-10: 0817646809
ISBN-13: 9780817646806
Formatas: 241 x 160 x 16 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Nonlinear Oscillations of Hamiltonian PDEs“

Būtina įvertinti prekę