Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Nonlinear Evolution Operators and Semigroups: Applications to Partial Differential Equations

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This research monograph deals with nonlinear evolution operators and semigroups generated by dissipative (accretive), possibly multivalued operators, as well as with the application of this theory to partial differential equations. It shows that a large class of PDE's can be studied via the semigroup approach. This theory is not available otherwise in the self-contained form provided by these Notes and moreover a considerable part of the results, proofs and methods are not to be found in other books. The exponential formula of Crandall and Liggett, some simple estimates due to Kobayashi and others, the characterization of compact semigroups due to Brézis, the proof of a fundamental property due to Ursescu and the author and some applications to PDE are of particular interest. Assuming only basic knowledge of functional analysis, the book will be of interest to researchers and graduate students in nonlinear analysis and PDE, and to mathematical physicists.

Informacija

Autorius: Nicolae H. Pavel
Serija: Lecture Notes in Mathematics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 1987
Knygos puslapių skaičius: 292
ISBN-10: 3540179747
ISBN-13: 9783540179740
Formatas: 235 x 155 x 16 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Nonlinear Evolution Operators and Semigroups: Applications to Partial Differential Equations“

Būtina įvertinti prekę

Goodreads reviews for „Nonlinear Evolution Operators and Semigroups: Applications to Partial Differential Equations“