Nonlinear Dimensionality Reduction Techniques: A Data Structure Preservation Approach

-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 220.2000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book proposes tools for analysis of multidimensional and metric data, by establishing a state-of-the-art of the existing solutions and developing new ones. It mainly focuses on visual exploration of these data by a human analyst, relying on a 2D or 3D scatter plot display obtained through Dimensionality Reduction.

Performing diagnosis of an energy system requires identifying relations between observed monitoring variables and the associated internal state of the system. Dimensionality reduction, which allows to represent visually a multidimensional dataset, constitutes a promising tool to help domain experts to analyse these relations. This book reviews existing techniques for visual data exploration and dimensionality reduction such as tSNE and Isomap, and proposes new solutions to challenges in that field.
In particular, it presents the new unsupervised technique ASKI and the supervised methods ClassNeRV and ClassJSE. Moreover, MING, a new approach for local map quality evaluation is also introduced. These methods are then applied to the representation of expert-designed fault indicators for smart-buildings, I-V curves for photovoltaic systems and acoustic signals for Li-ion batteries.

Informacija

Autorius: Sylvain Lespinats, Denys Dutykh, Benoit Colange,
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2021
Knygos puslapių skaičius: 292
ISBN-10: 3030810259
ISBN-13: 9783030810252
Formatas: 241 x 160 x 22 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Nonlinear Dimensionality Reduction Techniques: A Data Structure Preservation Approach“

Būtina įvertinti prekę

Goodreads reviews for „Nonlinear Dimensionality Reduction Techniques: A Data Structure Preservation Approach“