Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Nonlinear Differential Equations of Monotone Types in Banach Spaces

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

In the last decades, functional methods played an increasing role in the qualita tive theory of partial differential equations. The spectral methods and theory of C 0 semigroups of linear operators as well as Leray¿Schauder degree theory, ?xed point theorems, and theory of maximal monotone nonlinear operators are now essential functional tools for the treatment of linear and nonlinear boundary value problems associated with partial differential equations. An important step was the extension in the early seventies of the nonlinear dy namics of accretive (dissipative) type of the Hille¿Yosida theory of C semigroups 0 of linear continuous operators. The main achievement was that the Cauchy problem associated with nonlinear m accretive operators in Banach spaces is well posed and the corresponding dynamic is expressed by the Peano exponential formula from ?nite dimensional theory. This fundamental result is the corner stone of the whole existence theory of nonlinear in?nite dynamics of dissipative type and its contri bution to the development of the modern theory of nonlinear partial differential equations cannot be underestimated.

Informacija

Autorius: Viorel Barbu
Serija: Springer Monographs in Mathematics
Leidėjas: Springer US
Išleidimo metai: 2012
Knygos puslapių skaičius: 284
ISBN-10: 1461425573
ISBN-13: 9781461425571
Formatas: 235 x 155 x 16 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Nonlinear Differential Equations of Monotone Types in Banach Spaces“

Būtina įvertinti prekę