Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Neural Network and Fuzzy Time Series: Forecasting using neural network and fuzzy time series

-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 79.0200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This work deals with neural networks (NN), specifically with multi-layered NN from the algorithm learning point of view. We will describe feed forward neural network (FFNN), recurrent neural network (RCNN) and introduce basic facts about NN, which will be used later in dissertation. A neural network is a mathematical model that is inspired by biological neural networks and tries to simulate them. It consists of interconnected units - neurons, which are the computation units of a neural network. NNs are part of Artificial Intelligence. The knowledge is stored in connections between neurons which are called synaptic weights (weights), simplification of biological dendrites and axons. NN is a universal aproximator of relations stored inside of data - a nonlinear statistical data modeling aproximator, is able to learn and adapt its structure based on internal/external information that is propagated through NN during learning phase. It is relatively easy to use in wide area of technical and nontechnical areas without further theoretical knowledge for most of NNs. There is a number of NNs that require knowledge to implement them and use correct set of initialization parameter.

Informacija

Autorius: Swati Sharma, Vinod Kumar,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2019
Knygos puslapių skaičius: 88
ISBN-10: 6200284997
ISBN-13: 9786200284990
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Neural Network and Fuzzy Time Series: Forecasting using neural network and fuzzy time series“

Būtina įvertinti prekę