This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. Multivariate nonlinear statistical models require the study of higher-order moments and cumulants. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis. A general test of multivariate skewness and kurtosis is obtained from this treatment. Exercises are provided for each chapter to help the readers understand the methods. Lastly, the book includes a comprehensive list of references, equipping readers to explore further on their own.
Autorius: | György Terdik |
Serija: | Frontiers in Probability and the Statistical Sciences |
Leidėjas: | Springer Nature Switzerland |
Išleidimo metai: | 2022 |
Knygos puslapių skaičius: | 432 |
ISBN-10: | 3030813940 |
ISBN-13: | 9783030813949 |
Formatas: | 235 x 155 x 24 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Multivariate Statistical Methods: Going Beyond the Linear“