Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Multi-Modal Face Presentation Attack Detection

-15% su kodu: ENG15
46,27 
Įprasta kaina: 54,43 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
46,27 
Įprasta kaina: 54,43 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 54.4300 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

For the last ten years, face biometric research has been intensively studied by the computer vision community. Face recognition systems have been used in mobile, banking, and surveillance systems. For face recognition systems, face spoofing attack detection is a crucial stage that could cause severe security issues in government sectors. Although effective methods for face presentation attack detection have been proposed so far, the problem is still unsolved due to the difficulty in the design of features and methods that can work for new spoofing attacks. In addition, existing datasets for studying the problem are relatively small which hinders the progress in this relevant domain. In order to attract researchers to this important field and push the boundaries of the state of the art on face anti-spoofing detection, we organized the Face Spoofing Attack Workshop and Competition at CVPR 2019, an event part of the ChaLearn Looking at People Series. As part of this event, we released the largest multi-modal face anti-spoofing dataset so far, the CASIA-SURF benchmark. The workshop reunited many researchers from around the world and the challenge attracted more than 300 teams. Some of the novel methodologies proposed in the context of the challenge achieved state-of-the-art performance. In this manuscript, we provide a comprehensive review on face anti-spoofing techniques presented in this joint event and point out directions for future research on the face anti-spoofing field.

Informacija

Autorius: Jun Wan, Guodong Guo, Stan Z. Li, Hugo Jair Escalante, Sergio Escalera,
Serija: Synthesis Lectures on Computer Vision
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2020
Knygos puslapių skaičius: 92
ISBN-10: 3031006968
ISBN-13: 9783031006968
Formatas: 235 x 191 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Multi-Modal Face Presentation Attack Detection“

Būtina įvertinti prekę