Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney¿Lebesque spaces, Whitney¿Besov spaces, Whitney¿Sobolev- based Lebesgue spaces, Whitney¿Triebel¿Lizorkin spaces,Whitney¿Sobolev-based Hardy spaces, Whitney¿BMO and Whitney¿VMO spaces.

Informacija

Autorius: Marius Mitrea, Irina Mitrea,
Serija: Lecture Notes in Mathematics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2013
Knygos puslapių skaičius: 436
ISBN-10: 364232665X
ISBN-13: 9783642326653
Formatas: 235 x 155 x 24 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains“

Būtina įvertinti prekę

Goodreads reviews for „Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains“