Modular Independent Component Analysis Approach for Face Recognition

-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 79.0200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

In the traditional ICA method the entire face image is considered for holistic approach of face recognition, hence large variation in pose or illumination will affect the recognition rate profoundly. In this approach dividing the face image in sub-images, independent components are obtained on these sub-images and used for face recognition. Here we have explored modular ICA approach with partition of facial images as well as with local facial components such as eyes, nose and mouth. The face recognition task affects due to presence of noise in facial images. We have experimented ICA algorithms for reduction of noise from facial images so as to reduce noise effect. The research work presented in this book and methods proposed for face recognition are unique and definitely will provide new way of analyzing facial features. This will be a good contribution for research in biometrics and image processing field.

Informacija

Autorius: Kailash Karande, Sanjay Talbar,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2020
Knygos puslapių skaičius: 112
ISBN-10: 6202528249
ISBN-13: 9786202528245
Formatas: 220 x 150 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Modular Independent Component Analysis Approach for Face Recognition“

Būtina įvertinti prekę

Goodreads reviews for „Modular Independent Component Analysis Approach for Face Recognition“