Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

0 Mėgstami
0Krepšelis

Modeling of Gas Compressor Diagnostics using Genetic Programming

-20% su kodu: BOOKS
64,36 
Įprasta kaina: 80,45 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
64,36 
Įprasta kaina: 80,45 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
2025-02-28 80.4500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Gas compressor diagnostics are vital in oil and gas industry because of the equipment criticality which requires continuous operations. Plant operators often face difficulties in predicting appropriate time for maintenance.The developed genetic programming model provides a powerful solution for gas compressor operators so that the operator can plan ahead for maintenance by knowing an estimate for the actual health of the compressor at any time. Ferozkhan has led a research work under my Supervision regading industrial gas compressor performance evaluation. The work was carried out when he undergone MSc at UTP for offshore oil & gas facilities operated by PETRONAS Carigali Sdn Bhd. The deterministic tool described in this book developed by authors using Genetic Programming was useful for real time operational analysis & optimizations. His work was acknowledged and published in international conferences. Mohd Shahrizal Jasmani Head (Maintenance Excellence) Center of Excellence, PETRONAS Upstream, Kuala lumpur, Malaysia

Informacija

Autorius: Ferozkhan Safiyullah, Shaharin Anwar Sulaiman,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2016
Knygos puslapių skaičius: 140
ISBN-10: 3659880205
ISBN-13: 9783659880209
Formatas: 220 x 150 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Modeling of Gas Compressor Diagnostics using Genetic Programming“

Būtina įvertinti prekę

Goodreads reviews for „Modeling of Gas Compressor Diagnostics using Genetic Programming“