Modeling Binary Correlated Responses using SAS, SPSS and R

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Statistical tools to analyze correlated binary data are spread out in the existing literature. This book makes these tools accessible to practitioners in a single volume. Chapters cover recently developed statistical tools and statistical packages that are tailored to analyzing correlated binary data. The authors showcase both traditional and new methods for application to health-related research. Data and computer programs will be publicly available in order for readers to replicate model development, but learning a new statistical language is not necessary with this book. The inclusion of code for R, SAS, and SPSS allows for easy implementation by readers. For readers interested in learning more about the languages, though, there are short tutorials in the appendix. Accompanying data sets are available for download through the book s website. Data analysis presented in each chapter will provide step-by-step instructions so these new methods can be readily applied to projects.  Researchers and graduate students in Statistics, Epidemiology, and Public Health will find this book particularly useful.

Informacija

Autorius: Kent A. Lorenz, Jeffrey R. Wilson,
Serija: ICSA Book Series in Statistics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2016
Knygos puslapių skaičius: 288
ISBN-10: 3319373617
ISBN-13: 9783319373614
Formatas: 235 x 155 x 16 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Modeling Binary Correlated Responses using SAS, SPSS and R“

Būtina įvertinti prekę

Goodreads reviews for „Modeling Binary Correlated Responses using SAS, SPSS and R“