Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Metastability in Stochastic Dynamics: Contributions to the Potential Theoretic Approach

-15% su kodu: ENG15
97,74 
Įprasta kaina: 114,99 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
97,74 
Įprasta kaina: 114,99 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 114.9900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Metastability is a phenomenon that occurs in the dynamics of a multi-stable non-linear system subject to noise. In models of statistical mechanics, it is related to the behavior of macroscopic quantities in the vicinity of a first order phase transition. A signature of metastable systems is the existence of multiple, well separated time scales. While at short time scales the system appears to be in a quasi-equilibrium (metastable state), at longer time scales rapid transitions between meta-stable states occur which are induced by random fluctuations. The understanding of the quantitative aspects of dynamical phase tran-sitions is one of the basic problem encountered in physics. In the first part of the book, we develop the potential theoretic approach to the analysis of metastability with a particular focus on systems in which the entropy is relevant. This approach allows to derive sharp estimates on metastable transitions times and its distribution. In the second part, we apply this method to the random-field Curie-Weiss-Potts model.

Informacija

Autorius: Martin Slowik
Leidėjas: Südwestdeutscher Verlag für Hochschulschriften AG Co. KG
Išleidimo metai: 2015
Knygos puslapių skaičius: 176
ISBN-10: 3838134125
ISBN-13: 9783838134123
Formatas: 220 x 150 x 12 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Metastability in Stochastic Dynamics: Contributions to the Potential Theoretic Approach“

Būtina įvertinti prekę

Goodreads reviews for „Metastability in Stochastic Dynamics: Contributions to the Potential Theoretic Approach“