Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Membrane Computing in Optimization: From Biology to Algorithms

-15% su kodu: ENG15
87,97 
Įprasta kaina: 103,49 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
87,97 
Įprasta kaina: 103,49 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 103.4900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Membrane Computing (P Systems) is an emergent and promising branch of Natural Computing. Designing P Systems is a heavy difficult problem. Until now there is no tool exists that can help in designing of P systems. This book shows how to use clonal selection algorithm with adaptive mutation in the design of P systems. In Addition the book proposes a Membrane-Immune algorithm that is inspired from the structure of living cells and the vertebrate immune system. The algorithm is tested by solving the Multiple Zero/One Knapsack Problem. The Membrane-Immune algorithm surpassed two variants of genetic algorithms that solved the same problem. The Membrane-Immune algorithm is also applied to generate a fuzzy rule based system to be used in breast cancer diagnosis. Generating a fuzzy rule system composes an exponential search space, which leads to the area of NP-complete problems. The algorithm is compared with five techniques and surpassed them. Last chapter presents a proposal of P Systems implementation using Cloud Computing. The proposed Implementation is illustrated by solving SAT problem.

Informacija

Autorius: Emad Nabil, Amr Badr,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2014
Knygos puslapių skaičius: 172
ISBN-10: 3659547999
ISBN-13: 9783659547997
Formatas: 220 x 150 x 11 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Membrane Computing in Optimization: From Biology to Algorithms“

Būtina įvertinti prekę

Goodreads reviews for „Membrane Computing in Optimization: From Biology to Algorithms“