Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Mechanics of hierarchical alpha-helix based materials: Nanomechanical strength and fracture mechanisms

-15% su kodu: ENG15
85,52 
Įprasta kaina: 100,61 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
85,52 
Įprasta kaina: 100,61 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 100.6100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Catastrophic phenomena that afflict millions of lives all have mostly one common underlying theme: the breakdown of the basic constituents leading to the failure of its overall structure. While the failure of engineering materials has been studied extensively, the mechanisms of failure in biological systems are not well understood. Here we undertake a systematic bottom-up analysis of the structure and properties of alpha-helix based protein materials (PMs). We review and extend a mathematical model, which allows us to describe the deformation mechanics in dependence of the hierarchical geometrical architecture. This model, validated with atomistic simulations, enables us to identify structure-property links and to predict the behavior of highly diverse protein structures. Our work suggests that the hierarchical, nanostructured design enables PMs to unify seemingly contradicting material properties with high potential for various new bioinspired material concepts.

Informacija

Autorius: Theodor Ackbarow
Leidėjas: Südwestdeutscher Verlag für Hochschulschriften AG Co. KG
Išleidimo metai: 2015
Knygos puslapių skaičius: 152
ISBN-10: 3838121007
ISBN-13: 9783838121000
Formatas: 220 x 150 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mechanics of hierarchical alpha-helix based materials: Nanomechanical strength and fracture mechanisms“

Būtina įvertinti prekę

Goodreads reviews for „Mechanics of hierarchical alpha-helix based materials: Nanomechanical strength and fracture mechanisms“