Measuring in Weighted Environment Moving from Metric to Order Topology: Knowing when close really means close

-15% su kodu: ENG15
43,93 
Įprasta kaina: 51,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
43,93 
Įprasta kaina: 51,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 51.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The group's decision is usually understood to be the reduction of different individual preferences among objects in a given set to a single collective preference or group preference. In recent years, the researchers have tended to concentrate on the analysis of decisions that are "reasonable" from a certain point of view, rather than on how group choices are in fact made. This book focuses on the most complex decision making structures, in which several persons are involved in the decision-making process, of which each has not only one decisional criterion but several. In addition, these criteria are incommensurables, which are usually the case in reality. Particularly it addresses the problem of measuring in weighted decision-making environments using the concept of compatibility of priority vectors. Now, it becomes possible to build thresholds of behavior, make complex pattern recognition in a weighted environment, and focusing on the relevant criteria to obtain better grades of nonsense within conflict resolution scenario. Hence, a better resource allocation process.

Informacija

Autorius: Claudio Garuti
Leidėjas: Editorial Académica Española
Išleidimo metai: 2017
Knygos puslapių skaičius: 84
ISBN-10: 3639632486
ISBN-13: 9783639632484
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Measuring in Weighted Environment Moving from Metric to Order Topology: Knowing when close really means close“

Būtina įvertinti prekę

Goodreads reviews for „Measuring in Weighted Environment Moving from Metric to Order Topology: Knowing when close really means close“