Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Measurement error in the assessment of finite population parameters

-15% su kodu: ENG15
84,28 
Įprasta kaina: 99,15 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
84,28 
Įprasta kaina: 99,15 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 99.1500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book deals with Estimation of finite population parameters under super population model when variates are subject to measurement error.Following Royall (1970, 71), and Royall and Herson (1973a, 1973b) approach, estimators of the finite population total under error-in-variables super population model have been developed. This has been extended in stratified sampling under error-in-variable super population model where slopes (regression coefficient) are varying from stratum to stratum and when slope across the strata is same and response variable is subject to measurement error.A limited simulation study has been carried out with Synthetic data generated under the models to examine the effect of measurement error on the precision of the estimate.The overall results show that % R.I. in standard error of the estimator can be reduced to a considerable extent if stratified sampling is resorted to Neyman allocation. It has been found that % R.I. in standard error increases with increase in the value. There would be no % R.I. in standard error.

Informacija

Autorius: Amar Singh, Bhim Singh, Bvs Sisodia,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2022
Knygos puslapių skaičius: 148
ISBN-10: 6204985027
ISBN-13: 9786204985022
Formatas: 220 x 150 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Measurement error in the assessment of finite population parameters“

Būtina įvertinti prekę

Goodreads reviews for „Measurement error in the assessment of finite population parameters“