SUPER KAINŲ lentynos! Nuo -20% iki -80% pigiau! Naršykite ČIA >>

0 Mėgstami
0Krepšelis
-22% su kodu: BOOKS
65,65 
Įprasta kaina: 84,17 
-22% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-30
-22% su kodu: BOOKS
65,65 
Įprasta kaina: 84,17 
-22% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-30
-22% su kodu: BOOKS
2025-03-31 65.65 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Informacija

Autorius: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong,
Leidėjas: Cambridge University Pr.
Išleidimo metai: 2020
ISBN-10: 110845514X
ISBN-13: 9781108455145
Formatas: 254 x 180 x 21 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mathematics for Machine Learning“

Būtina įvertinti prekę

Goodreads reviews for „Mathematics for Machine Learning“