Mathematical Theories of Machine Learning - Theory and Applications

-15% su kodu: ENG15
125,26 
Įprasta kaina: 147,36 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
125,26 
Įprasta kaina: 147,36 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 147.3600 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.

Informacija

Autorius: S. S. Iyengar, Bin Shi,
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2019
Knygos puslapių skaičius: 156
ISBN-10: 3030170756
ISBN-13: 9783030170752
Formatas: 241 x 160 x 15 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mathematical Theories of Machine Learning - Theory and Applications“

Būtina įvertinti prekę

Goodreads reviews for „Mathematical Theories of Machine Learning - Theory and Applications“