Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Mathematical Description of Differential Hebbian Plasticity: and its Relation to Reinforcement Learning

-15% su kodu: ENG15
85,52 
Įprasta kaina: 100,61 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
85,52 
Įprasta kaina: 100,61 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 100.6100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The human brain consists of more than a billion nerve cells, the neurons, each having several thousand connections, the synapses. These connections are not fixed but change all the time. In order to describe synaptic plasticity, different mathematical rules have been proposed most of which follow Hebb's postulate. Donald Hebb suggested in 1949 that synapses change if pre-synaptic activity, i.e. the activity of a synapse that converges to the neuron, and post-synaptic activity, i.e. activity of the neuron itself, correlate with each other. A general descriptive framework, however, is yet missing. With the results developed here, it is now possible to relate different Hebbian rules and their properties to each other. Additionally, a setup is presented with which any Hebbian plasticity rule with a certain property can be used to emulate temporal difference learning, a widely used reinforcement learning algorithm. Further on, it is also possible to calculate plasticity analytically for many synapses with continuously changing activity. This is of relevance for all behaving systems (machines, animals) whose interaction with their environment leads to widely varying neural activation.

Informacija

Autorius: Christoph Kolodziejski
Leidėjas: Südwestdeutscher Verlag für Hochschulschriften AG Co. KG
Išleidimo metai: 2015
Knygos puslapių skaičius: 156
ISBN-10: 3838113721
ISBN-13: 9783838113722
Formatas: 220 x 150 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mathematical Description of Differential Hebbian Plasticity: and its Relation to Reinforcement Learning“

Būtina įvertinti prekę