Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Mathematical Control Theory for Stochastic Partial Differential Equations

-15% su kodu: ENG15
230,37 
Įprasta kaina: 271,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
230,37 
Įprasta kaina: 271,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 271.0200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This is the first book to systematically present control theory for stochastic distributed parameter systems, a comparatively new branch of mathematical control theory. The new phenomena and difficulties arising in the study of controllability and optimal control problems for this type of system are explained in detail. Interestingly enough, one has to develop new mathematical tools to solve some problems in this field, such as the global Carleman estimate for stochastic partial differential equations and the stochastic transposition method for backward stochastic evolution equations. In a certain sense, the stochastic distributed parameter control system is the most general control system in the context of classical physics. Accordingly, studying this field may also yield valuable insights into quantum control systems.

A basic grasp of functional analysis, partial differential equations, and control theory for deterministic systems is the only prerequisite for reading this book.

Informacija

Autorius: Xu Zhang, Qi Lü,
Serija: Probability Theory and Stochastic Modelling
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2022
Knygos puslapių skaičius: 608
ISBN-10: 3030823334
ISBN-13: 9783030823337
Formatas: 235 x 155 x 33 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mathematical Control Theory for Stochastic Partial Differential Equations“

Būtina įvertinti prekę

Goodreads reviews for „Mathematical Control Theory for Stochastic Partial Differential Equations“