Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
This Open Access book reviews recent theoretical and numerical developments in nonlinear model order reduction in continuum mechanics, being addressed to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning algorithms. The book involves a survey of key methods of model order reduction applied to model-based engineering and digital twining, by learning linear or nonlinear latent spaces.
Autorius: | David Ryckelynck, Nissrine Akkari, Fabien Casenave, |
Serija: | SpringerBriefs in Computer Science |
Leidėjas: | Springer Nature Switzerland |
Išleidimo metai: | 2024 |
Knygos puslapių skaičius: | 120 |
ISBN-10: | 3031527666 |
ISBN-13: | 9783031527661 |
Formatas: | 235 x 155 x 7 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Manifold Learning: Model Reduction in Engineering“