Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

0 Mėgstami
0Krepšelis

Machine Learning-Augmented Spectroscopies for Intelligent Materials Design

-20% su kodu: BOOKS
203,26 
Įprasta kaina: 254,08 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
203,26 
Įprasta kaina: 254,08 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
2025-03-31 203.26 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The thesis contains several pioneering results at the intersection of state-of-the-art materials characterization techniques and machine learning. The use of machine learning empowers the information extraction capability of neutron and photon spectroscopies. In particular, new knowledge and new physics insights to aid spectroscopic analysis may hold great promise for next-generation quantum technology. As a prominent example, the so-called proximity effect at topological material interfaces promises to enable spintronics without energy dissipation and quantum computing with fault tolerance, yet the characteristic spectral features to identify the proximity effect have long been elusive. The work presented within permits a fine resolution of its spectroscopic features and a determination of the proximity effect which could aid further experiments with improved interpretability. A few novel machine learning architectures are proposed in this thesis work which leverage the case when the data is scarce and utilize the internal symmetry of the system to improve the training quality. The work sheds light on future pathways to apply machine learning to augment experiments.

Informacija

Autorius: Nina Andrejevic
Serija: Springer Theses
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2023
Knygos puslapių skaičius: 112
ISBN-10: 303114810X
ISBN-13: 9783031148101
Formatas: 235 x 155 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Machine Learning-Augmented Spectroscopies for Intelligent Materials Design“

Būtina įvertinti prekę

Goodreads reviews for „Machine Learning-Augmented Spectroscopies for Intelligent Materials Design“