Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Logics of Proofs and Justifications

-15% su kodu: ENG15
44,17 
Įprasta kaina: 51,96 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
44,17 
Įprasta kaina: 51,96 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 51.9600 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Justification logics are closely related to modal logics and can be viewed as a refinement of the latter with machinery for justification manipulation. Justifications are represented directly in the language by terms, which can be interpreted as formal proofs in a deductive system, evidence for knowledge, winning strategy in a game, etc. This more expressive language proved beneficial in both proof theory and epistemology and helped investigate problems ranging from a classical provability semantics for intuitionistic logic to the logical omniscience problem. Justification logic is a new and fast evolving field that offers unexpected new approaches and insights into old problems. Its position at the junction of mathematics, philosophy, and computer science makes it of interest to a wide audience. This book provides a rigorous introduction to justification logic. It covers the basic constructions of justification logic as well as epistemic models and provability semantics. Further it includes chapters on decidability and complexity of justification logics as well as a chapter on self-referentiality. It also contains detailed historic remarks on the subject.

Informacija

Autorius: Roman Kuznets, Thomas Studer,
Leidėjas: College Publications
Išleidimo metai: 2019
Knygos puslapių skaičius: 246
ISBN-10: 1848901682
ISBN-13: 9781848901681
Formatas: 234 x 156 x 14 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Logics of Proofs and Justifications“

Būtina įvertinti prekę

Goodreads reviews for „Logics of Proofs and Justifications“