Locally Convex Spaces and Linear Partial Differential Equations

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

It is hardly an exaggeration to say that, if the study of general topolog­ ical vector spaces is justified at all, it is because of the needs of distribu­ tion and Linear PDE * theories (to which one may add the theory of convolution in spaces of hoi om orphic functions). The theorems based on TVS ** theory are generally of the "foundation" type: they will often be statements of equivalence between, say, the existence - or the approx­ imability -of solutions to an equation Pu = v, and certain more "formal" properties of the differential operator P, for example that P be elliptic or hyperboJic, together with properties of the manifold X on which P is defined. The latter are generally geometric or topological, e. g. that X be P-convex (Definition 20. 1). Also, naturally, suitable conditions will have to be imposed upon the data, the v's, and upon the stock of possible solutions u. The effect of such theorems is to subdivide the study of an equation like Pu = v into two quite different stages. In the first stage, we shall look for the relevant equivalences, and if none is already available in the literature, we shall try to establish them. The second stage will consist of checking if the "formal" or "geometric" conditions are satisfied.

Informacija

Autorius: François Treves
Serija: Grundlehren der mathematischen Wissenschaften
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2012
Knygos puslapių skaičius: 140
ISBN-10: 3642873731
ISBN-13: 9783642873737
Formatas: 235 x 155 x 8 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Locally Convex Spaces and Linear Partial Differential Equations“

Būtina įvertinti prekę

Goodreads reviews for „Locally Convex Spaces and Linear Partial Differential Equations“