Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Lectures on Riemann Surfaces

-15% su kodu: ENG15
93,89 
Įprasta kaina: 110,46 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
93,89 
Įprasta kaina: 110,46 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 110.4600 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster. Its aim is to give an introduction to this rich and beautiful subject, while presenting methods from the theory of complex manifolds which, in the special case of one complex variable, turn out to be particularly elementary and transparent. The book is divided into three chapters. In the first chapter we consider Riemann surfaces as covering spaces and develop a few basics from topology which are needed for this. Then we construct the Riemann surfaces which arise via analytic continuation of function germs. In particular this includes the Riemann surfaces of algebraic functions. As well we look more closely at analytic functions which display a special multi-valued behavior. Examples of this are the primitives of holomorphic i-forms and the solutions of linear differential equations. The second chapter is devoted to compact Riemann surfaces. The main classical results, like the Riemann-Roch Theorem, Abel's Theorem and the Jacobi inversion problem, are presented. Sheaf cohomology is an important technical tool. But only the first cohomology groups are used and these are comparatively easy to handle. The main theorems are all derived, following Serre, from the finite dimensionality of the first cohomology group with coefficients in the sheaf of holomorphic functions. And the proof of this is based on the fact that one can locally solve inhomogeneous Cauchy­ Riemann equations and on Schwarz' Lemma.

Informacija

Autorius: Otto Forster
Serija: Graduate Texts in Mathematics
Leidėjas: Springer US
Išleidimo metai: 1981
Knygos puslapių skaičius: 268
ISBN-10: 0387906177
ISBN-13: 9780387906171
Formatas: 241 x 160 x 21 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Lectures on Riemann Surfaces“

Būtina įvertinti prekę