Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Kernel Mean Embedding of Distributions: A Review and Beyond

-15% su kodu: ENG15
199,90 
Įprasta kaina: 235,18 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
199,90 
Įprasta kaina: 235,18 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 235.1800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

A Hilbert space embedding of a distribution-in short, a kernel mean embedding-has recently emerged as a powerful tool for machine learning and statistical inference. The basic idea behind this framework is to map distributions into a reproducing kernel Hilbert space (RKHS) in which the whole arsenal of kernel methods can be extended to probability measures. It can be viewed as a generalization of the original "feature map" common to support vector machines (SVMs) and other kernel methods. In addition to the classical applications of kernel methods, the kernel mean embedding has found novel applications in ¿elds ranging from probabilistic modeling to statistical inference, causal discovery, and deep learning. Kernel Mean Embedding of Distributions: A Review and Beyond provides a comprehensive review of existing work and recent advances in this research area, and to discuss some of the most challenging issues and open problems that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics who are interested in the theory and applications of kernel mean embeddings.

Informacija

Autorius: Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur,
Leidėjas: Now Publishers Inc
Išleidimo metai: 2017
Knygos puslapių skaičius: 154
ISBN-10: 1680832883
ISBN-13: 9781680832884
Formatas: 234 x 156 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Kernel Mean Embedding of Distributions: A Review and Beyond“

Būtina įvertinti prekę

Goodreads reviews for „Kernel Mean Embedding of Distributions: A Review and Beyond“