Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Kähler Immersions of Kähler Manifolds into Complex Space Forms

-15% su kodu: ENG15
64,78 
Įprasta kaina: 76,21 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
64,78 
Įprasta kaina: 76,21 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 76.2100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The aim of this book is to describe Calabi's original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. Calabi's pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kähler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a Kähler immersion into another, and to decades of further research on the subject. Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader's understanding. Apart from the section on Kähler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and Kähler geometry.

Informacija

Autorius: Michela Zedda, Andrea Loi,
Leidėjas: Springer International Publishing
Išleidimo metai: 2018
Knygos puslapių skaičius: 112
ISBN-10: 3319994824
ISBN-13: 9783319994826
Formatas: 235 x 155 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Kähler Immersions of Kähler Manifolds into Complex Space Forms“

Būtina įvertinti prekę

Goodreads reviews for „Kähler Immersions of Kähler Manifolds into Complex Space Forms“