Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Investigations in Algebraic Theory of Combinatorial Objects

-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 220.2000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed.

Informacija

Serija: Mathematics and Its Applications
Leidėjas: Springer Netherlands
Išleidimo metai: 2010
Knygos puslapių skaičius: 528
ISBN-10: 9048141958
ISBN-13: 9789048141951
Formatas: 279 x 210 x 29 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Investigations in Algebraic Theory of Combinatorial Objects“

Būtina įvertinti prekę