Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
Analysis.- 1. Notations.- 2. The Real Numbers, Regarded as an Ordered Field.- 3. Functions, Limits, and Continuity.- 4. Integers. Sequences. The Induction Principle.- 5. The Continuity of ?.- 6. The Riemann Integral of a Bounded Function.- 7. Necessary and Sufficent Conditions for Integrability.- 8. Invertible Functions. Arc-length and Path-length.- 9. Point-wise Convergence and Uniform Convergence.- 10. Infinite Series.- 11. Absolute Convergence. Rearrangements of Series.- 12. Power Series.- 13. Power Series for Elementary Functions.- Topology.- 1. Sets and Functions.- 2. Metric Spaces.- 3. Neighborhood Spaces and Topological Spaces.- 4. Cardinality.- 5. The Completeness of ?. Uncountable Sets.- 6. The Schr¿der-Bernstein Theorem.- 7. Compactness in ?n.- 8. Compactness in Abstract Spaces.- 9. The Use of Choice in Existence Proofs.- 10. Linearly Ordered Spaces.- 11. Mappings Between Metric Spaces.- 12. Mappings Between Topological Spaces.- 13. Connectivity.- 14. Well-ordering.- 15. The Existence of Well-orderings. Zorn¿s Lemma.
Autorius: | E. E. Moise |
Serija: | Universitext |
Leidėjas: | Springer US |
Išleidimo metai: | 1982 |
Knygos puslapių skaičius: | 108 |
ISBN-10: | 0387907017 |
ISBN-13: | 9780387907017 |
Formatas: | 235 x 155 x 7 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Introductory Problem Courses in Analysis and Topology“