Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Introduction to Tensor Products of Banach Spaces

-15% su kodu: ENG15
201,57 
Įprasta kaina: 237,14 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
201,57 
Įprasta kaina: 237,14 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 237.1400 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book is intended as an introduction to the theory of tensor products of Banach spaces. The prerequisites for reading the book are a first course in Functional Analysis and in Measure Theory, as far as the Radon-Nikodym theorem. The book is entirely self-contained and two appendices give addi­ tional material on Banach Spaces and Measure Theory that may be unfamil­ iar to the beginner. No knowledge of tensor products is assumed. Our viewpoint is that tensor products are a natural and productive way to understand many of the themes of modern Banach space theory and that "tensorial thinking" yields insights into many otherwise mysterious phenom­ ena. We hope to convince the reader of the validity of this belief. We begin in Chapter 1 with a treatment of the purely algebraic theory of tensor products of vector spaces. We emphasize the use of the tensor product as a linearizing tool and we explain the use of tensor products in the duality theory of spaces of operators in finite dimensions. The ideas developed here, though simple, are fundamental for the rest of the book.

Informacija

Autorius: Raymond A. Ryan
Serija: Springer Monographs in Mathematics
Leidėjas: Springer London
Išleidimo metai: 2010
Knygos puslapių skaičius: 244
ISBN-10: 1849968721
ISBN-13: 9781849968720
Formatas: 254 x 178 x 14 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Introduction to Tensor Products of Banach Spaces“

Būtina įvertinti prekę

Goodreads reviews for „Introduction to Tensor Products of Banach Spaces“