Introduction to Shannon Sampling and Interpolation Theory

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Much of that which is ordinal is modeled as analog. Most computational engines on the other hand are dig- ital. Transforming from analog to digital is straightforward: we simply sample. Regaining the original signal from these samples or assessing the information lost in the sampling process are the fundamental questions addressed by sampling and interpolation theory. This book deals with understanding, generalizing, and extending the cardinal series of Shannon sampling theory. The fundamental form of this series states, remarkably, that a bandlimited signal is uniquely specified by its sufficiently close equally spaced samples. The contents of this book evolved from a set of lecture notes prepared for a graduate survey course on Shannon sampling and interpolation theory. The course was taught at the Department of Electrical Engineering at the University of Washington, Seattle. Each of the seven chapters in this book includes a list of references specific to that chapter. A sequel to this book will contain an extensive bibliography on the subject. The author has also opted to include solutions to selected exercises in the Appendix.

Informacija

Autorius: Robert J. II Marks
Serija: Springer Texts in Electrical Engineering
Leidėjas: Springer US
Išleidimo metai: 2011
Knygos puslapių skaičius: 344
ISBN-10: 1461397103
ISBN-13: 9781461397106
Formatas: 235 x 155 x 19 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Introduction to Shannon Sampling and Interpolation Theory“

Būtina įvertinti prekę

Goodreads reviews for „Introduction to Shannon Sampling and Interpolation Theory“