Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
1. Basic definitions.- 2. The invariant bilinear form and the generalized Casimir operator.- 3. Integrable representations and the Weyl group of a Kac-Moody algebra.- 4. Some properties of generalized Cartan matrices.- 5. Real and imaginary roots.- 6. Affine Lie algebras: the normalized invariant bilinear form, the root system and the Weyl group.- 7. Affine Lie algebras: the realization (case k = 1).- 8. Affine Lie algebras: the realization (case k = 2 or 3). Application to the classification of finite order automorphisms.- 9. Highest weight modules over the Lie algebra g(A).- 10. Integrable highest weight modules: the character formula.- 11. Integrable highest weight modules: the weight system, the contravariant Hermitian form and the restriction problem.- 12. Integrable highest weight modules over affine Lie algebras. Application to ?-function identities.- 13. Affine Lie algebras, theta functions and modular forms.- 14. The principal realization of the basic representation. Application to the KdV-type hierarchies of non-linear partial differential equations.- Index of notations and definitions.- References.
Autorius: | Victor G. Kac |
Serija: | Progress in Mathematics |
Leidėjas: | Birkhäuser Boston |
Išleidimo metai: | 2012 |
Knygos puslapių skaičius: | 272 |
ISBN-10: | 1475713843 |
ISBN-13: | 9781475713848 |
Formatas: | 229 x 152 x 15 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Infinite Dimensional Lie Algebras: An Introduction“