Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Infinite Dimensional Lie Algebras: An Introduction

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

1. Basic definitions.- 2. The invariant bilinear form and the generalized Casimir operator.- 3. Integrable representations and the Weyl group of a Kac-Moody algebra.- 4. Some properties of generalized Cartan matrices.- 5. Real and imaginary roots.- 6. Affine Lie algebras: the normalized invariant bilinear form, the root system and the Weyl group.- 7. Affine Lie algebras: the realization (case k = 1).- 8. Affine Lie algebras: the realization (case k = 2 or 3). Application to the classification of finite order automorphisms.- 9. Highest weight modules over the Lie algebra g(A).- 10. Integrable highest weight modules: the character formula.- 11. Integrable highest weight modules: the weight system, the contravariant Hermitian form and the restriction problem.- 12. Integrable highest weight modules over affine Lie algebras. Application to ?-function identities.- 13. Affine Lie algebras, theta functions and modular forms.- 14. The principal realization of the basic representation. Application to the KdV-type hierarchies of non-linear partial differential equations.- Index of notations and definitions.- References.

Informacija

Autorius: Victor G. Kac
Serija: Progress in Mathematics
Leidėjas: Birkhäuser Boston
Išleidimo metai: 2012
Knygos puslapių skaičius: 272
ISBN-10: 1475713843
ISBN-13: 9781475713848
Formatas: 229 x 152 x 15 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Infinite Dimensional Lie Algebras: An Introduction“

Būtina įvertinti prekę

Goodreads reviews for „Infinite Dimensional Lie Algebras: An Introduction“