Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
1. We begin by giving a simple example of a partial differential inequality that occurs in an elementary physics problem. We consider a fluid with pressure u(x, t) at the point x at the instant t that 3 occupies a region Q oflR bounded by a membrane r of negligible thickness that, however, is semi-permeable, i. e., a membrane that permits the fluid to enter Q freely but that prevents all outflow of fluid. One can prove then (cf. the details in Chapter 1, Section 2.2.1) that au (aZu azu aZu) (1) in Q, t>o, -a - du = g du = -a z + -a z + -a z t Xl X X3 z l g a given function, with boundary conditions in the form of inequalities u(X,t»o => au(x,t)/an=O, XEr, (2) u(x,t)=o => au(x,t)/an?:O, XEr, to which is added the initial condition (3) u(x,O)=uo(x). We note that conditions (2) are non linear; they imply that, at each fixed instant t, there exist on r two regions r~ and n where u(x, t) =0 and au (x, t)/an = 0, respectively. These regions are not prescribed; thus we deal with a "free boundary" problem.
Autorius: | G. Duvant, J. L. Lions, |
Serija: | Grundlehren der mathematischen Wissenschaften |
Leidėjas: | Springer Berlin Heidelberg |
Išleidimo metai: | 2011 |
Knygos puslapių skaičius: | 420 |
ISBN-10: | 364266167X |
ISBN-13: | 9783642661679 |
Formatas: | 244 x 170 x 23 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Inequalities in Mechanics and Physics“