Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Improving Computer Games Performance Using Batch Reinforcement Learning

-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 79.0200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

With the progress of researches in human brain, they found that when human learns something new, the brain cells structure is changed. That means it is possible to manufacture and develop intelligence. The idea is the same for the device. As intelligence requires knowledge, it is necessary for computers to learn and gain knowledge. Machine learning serves this purpose. With the rapid development of computer games we need continuous new techniques, because with the increasing numbers of players only a tough games with high policy, actions and tactics survive. This book will be useful to researchers who are interested in getting a good idea about computer games. We proposed a new algorithm based on LSPI (Batch Reinforcement Learning Algorithm) called Least-Squares Continuous Action Policy Iteration (LSCAPI). We implemented on two different types of games 8-queens board game and Glest and StarCraft Brood War real-time strategy (RTS) games. The book can have benefit for the beginners in computer games field, it gives sequential steps of the game as an idea ending with the implementation.

Informacija

Autorius: Hebatullah Rashed
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2016
Knygos puslapių skaičius: 100
ISBN-10: 3659882372
ISBN-13: 9783659882371
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Improving Computer Games Performance Using Batch Reinforcement Learning“

Būtina įvertinti prekę

Goodreads reviews for „Improving Computer Games Performance Using Batch Reinforcement Learning“