Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Immunological Bioinformatics: Predicting MHC Class II Epitopes

-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 79.0200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Successful Prediction for Major Histocompatibility Complex (MHC) molecule epitopes is an essential step in designing Genetic Vaccines. Successful prediction of MHC class II epitopes is more difficult than MHC class I epitopes due to open binding groove at both ends in class II molecules, this structure leads to variable length for MHC II epitopes and complicating the task for detecting the core binding 9-mer. In this Book we presented a novel classification algorithm for predicting MHC Class II epitopes using Multiple Instance Learning technique. Separated Constructive Clustering Ensemble (SCCE) is our new version for Constructive Clustering Ensemble (CCE). SCCE integrated Genetic Algorithm, K medoid clustering, Ensemble learning and Support vector machine in an orchestration to predict the MHC II epitopes. SCCE is tested by four benchmark data sets and achieved average accuracy 85%. SCCE results exceed most of the current state of art regression methods. SCCE achieved these results using only binder and non-binder flags, without need for regression data.

Informacija

Autorius: Hossam Elsemellawy, Amr Badr, Mostafa Abdelazim,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2015
Knygos puslapių skaičius: 104
ISBN-10: 3659792489
ISBN-13: 9783659792489
Formatas: 220 x 150 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Immunological Bioinformatics: Predicting MHC Class II Epitopes“

Būtina įvertinti prekę

Goodreads reviews for „Immunological Bioinformatics: Predicting MHC Class II Epitopes“