Image Compression using Neural Networks & Wavelet Transforms

-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Compression provides a means of reducing storage costs and increases the rate of transmission. Image compression reduces the size of graphic images without reducing image quality. Image performance is calculated using certain parameters such as PSNR (peak signal to noise ratio), CR (compression ratio), MSE (mean square error), and (BPP) per pixel bit. Mean Square error is a network performance parameter, it deals the network's Performance according to the mean of squared errors. The Peak signal to noise ratio is generally used for quality comparison between the original image and a compressed image. The Peak Signal to Noise Ratio and Mean Square Error are the two error parameters used to measure image compression quality. The MSE shows the growing squared error among the original image and compressed, and PSNR shows a calculation of the peak error. The lesser the value of Mean Square Error will reduce the error. The compression ratio (CR) is the ratio of compressed image compared to uncompressed image size. The bits per pixel (BPP) value will fluctuate for different images and different quality of images.

Informacija

Autorius: Saurabh Jain, Prachi Jain,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2020
Knygos puslapių skaičius: 80
ISBN-10: 6202918675
ISBN-13: 9786202918671
Formatas: 220 x 150 x 5 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Image Compression using Neural Networks & Wavelet Transforms“

Būtina įvertinti prekę

Goodreads reviews for „Image Compression using Neural Networks & Wavelet Transforms“