Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Illumination Invariant Face Recognition: Using Local Binary and Local Ternary Pattern Fusion

-15% su kodu: ENG15
43,93 
Įprasta kaina: 51,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
43,93 
Įprasta kaina: 51,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 51.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

In this book an in-depth study of the state-of-art illumination invariant face recognition techniques have been carried out and a method based on the fusion of two different feature extraction techniques is proposed to overcome the adverse illumination conditions. The proposed system uses the gradient based illumination normalization to remove the illuminance component superiority. To obtain the illumination insensitive face representation, a ratio of the gradient amplitude to the original image intensity is obtained. The facial features are extracted using two different feature extraction techniques. Local binary pattern (LBP) is a very efficient local texture descriptor based on thresholding the pixels in a small neighborhood based on the value of the center pixel. Local ternary pattern (LTP) is a noise resistant modified version of LBP. The features vectors provided by the two techniques are fused at feature level. Finally artificial neural network is used in the classification stage for recognition purpose.

Informacija

Autorius: Reecha Sharma, Swati Manhotra,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2017
Knygos puslapių skaičius: 88
ISBN-10: 6202054832
ISBN-13: 9786202054836
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Illumination Invariant Face Recognition: Using Local Binary and Local Ternary Pattern Fusion“

Būtina įvertinti prekę

Goodreads reviews for „Illumination Invariant Face Recognition: Using Local Binary and Local Ternary Pattern Fusion“