Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Hypothesis-based image segmentation: A Machine Learning Approach

-15% su kodu: ENG15
97,74 
Įprasta kaina: 114,99 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
97,74 
Įprasta kaina: 114,99 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 114.9900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This thesis addresses the ¿gure-ground segmentation problem in the context of complex systems for automatic object recognition. Firstly the problem of image segmentation in general terms is introduced, followed by a discussion about its importance for online and interactive acquisition of visual representations. Secondly a machine learning approach using arti¿cial neural networks is presented. This approach on the basis of Generalized Learning Vector Quantization is investigated in challenging scenarios such as the real-time ¿gure-ground segmentation of complex shaped objects under continuously changing environment conditions. The ability to ful¿ll these requirements characterize the novelty of the approach compared to state-of-the-art methods. Finally the proposed technique is extended in several aspects, which yields a framework for object segmentation that is applicable to improve current systems for visual object learning and recognition.

Informacija

Autorius: Alexander Denecke
Leidėjas: Südwestdeutscher Verlag für Hochschulschriften AG Co. KG
Išleidimo metai: 2015
Knygos puslapių skaičius: 164
ISBN-10: 3838133714
ISBN-13: 9783838133713
Formatas: 220 x 150 x 11 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Hypothesis-based image segmentation: A Machine Learning Approach“

Būtina įvertinti prekę

Goodreads reviews for „Hypothesis-based image segmentation: A Machine Learning Approach“