Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Hyperspectral Face Recognition: Using Multidimensional Clustering on Hyperspectral Face Images

-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 79.0200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

In this book the hyperspectral face recognition system is explored in the context of digital signal & image processing techniques. Hyperspectral images contain a wealth of data, but interpreting them requires an understanding of exactly what properties of human face we are trying to measure, and how they relate to the measurements actually made by the hyperspectral sensor. With the availability of hyperspectral face data it is possible to build systems on this. Main focus current research is to use hyperspectral face images in order to recognition the face. Hyperspectral face images with 33 band are used for generation of Vector Quantization based feature vector extraction process. These images are grouped into eleven sub-bands of three images each. Algorithms like Kekre¿s Fast Codebook Generation (KFCG) Algorithm and Kekre¿s Median Codebook Generation (KMCG) Algorithm are used to generate codebooks for each sub-band and then store into feature vector database. This feature vector set is used for identification of the person. . K-Nearest Neighborhood classifier (K-NN) is used and performance is evaluated, metrics such as EER, SPI, PI are used for benchmarking.

Informacija

Autorius: Vinayak Bharadi, Payal Mishra,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2014
Knygos puslapių skaičius: 100
ISBN-10: 3659363529
ISBN-13: 9783659363528
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Hyperspectral Face Recognition: Using Multidimensional Clustering on Hyperspectral Face Images“

Būtina įvertinti prekę