Hybrid Machine Learning and Meta-Heuristic Algorithms for DDOS Attack: Theory and Case Study

-15% su kodu: ENG15
97,74 
Įprasta kaina: 114,99 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
97,74 
Įprasta kaina: 114,99 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 114.9900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The Distributed Denial of Service (DDoS) attack is a kind of intrusion in a cloud computing environment that severely affects the end user by injecting illegitimate packets of data into internet traffic without the knowledge of the clients. It is a serious problem in cloud computing because the detection and mitigation of intrusion is a challenging task that will affect the functionality of the entire architecture. Numerous cyber-security measures have been carried out to protect the server from attackers or hackers. The traditional cyber-security methods failed to protect the server against several external unauthorized traffic. It is important to develop an Intrusion Detection System (IDS) in loT architecture. This book aims to provide detailed literature reviews carried out to investigate various machine learning techniques, neural network models, and optimization algorithms aimed to identify the gap problems and then develop machine learning algorithms to detect the intrusion accurately and effectively.

Informacija

Autorius: Sumathi S, Rajesh R,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2024
Knygos puslapių skaičius: 188
ISBN-10: 6207456726
ISBN-13: 9786207456727
Formatas: 220 x 150 x 12 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Hybrid Machine Learning and Meta-Heuristic Algorithms for DDOS Attack: Theory and Case Study“

Būtina įvertinti prekę

Goodreads reviews for „Hybrid Machine Learning and Meta-Heuristic Algorithms for DDOS Attack: Theory and Case Study“