Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Hybrid Deep Learning Model for Wheat Yellow Rust Disease Detection: Detection of Wheat Yellow Rust Severity Levels using Deep Learning Model

-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

In many regions of the world, wheat quality and yield losses have been increased due to wheat rust diseases. The identification of yellow rust disease along with the percentage of tissues damaged by the rust disease in terms of severity levels is very important and usually it is achieved through experienced evaluators or computer vision techniques. With the help of computer vision techniques, the cost and time should be minimized. This study presents classification model for wheat yellow rust with different severity levels of disease. It is achieved through STARGAN and Convolutional neural network (CNN). The STARGAN is proposed in this study for data augmentation. After conducting several experiments with parameters such as different epochs, batch sizes, learning rate, and dropout rate this study achieves 94.07% classification accuracy to classify wheat yellow rust from the wheat normal plant. During severity measurement, CNN achieved 94.3% validation accuracy of wheat yellow rust at high severity level.

Informacija

Autorius: Deepak Kumar, Vinay Kukreja,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2021
Knygos puslapių skaičius: 84
ISBN-10: 6204210335
ISBN-13: 9786204210339
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Hybrid Deep Learning Model for Wheat Yellow Rust Disease Detection: Detection of Wheat Yellow Rust Severity Levels using Deep Learning Model“

Būtina įvertinti prekę