Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Hunting Colored (Quantum) Butterflies: A Geometric Derivation of TKNN-equations

-15% su kodu: ENG15
109,97 
Įprasta kaina: 129,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
109,97 
Įprasta kaina: 129,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 129.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Despite of its title, this book is not a compendium of a young entomologist's research on new exotic species of colorful butterflies. In the pages of this book you will not find the story of a hunter determined to catch unknown specimen of enigmatic multicolored insects living in the forest in the heart of Africa or South America. The unwary reader, possibly intrigued by the title, should be somehow surprised to realize that this work is about Mathematical Physics. Nevertheless, this ambiguity hides some truths. Mathematical ideas fly light with butterfly wings in the mathematician's mind. They are painted with the gaudy colors of the intuition and imagination. The mathematician spends his time hunting for new problems just like the entomologist does for his preys. The tools he uses to get his hunting trophy are theories, theorems, proofs, ... Keeping in mind this analogy, the reader may consider this book as the story of my personal hunt aimed at capturing the secret of the quantum butterflies. Well, It is time to cry aloud: - let the hunt begin!

Informacija

Autorius: Giuseppe De Nittis
Leidėjas: Scholars' Press
Išleidimo metai: 2013
Knygos puslapių skaičius: 204
ISBN-10: 3639519582
ISBN-13: 9783639519587
Formatas: 220 x 150 x 13 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Hunting Colored (Quantum) Butterflies: A Geometric Derivation of TKNN-equations“

Būtina įvertinti prekę

Goodreads reviews for „Hunting Colored (Quantum) Butterflies: A Geometric Derivation of TKNN-equations“