How Many Zeroes?: Counting Solutions of Systems of Polynomials via Toric Geometry at Infinity

-15% su kodu: ENG15
84,13 
Įprasta kaina: 98,98 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
84,13 
Įprasta kaina: 98,98 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 98.9800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field. The text collects and synthesizes a number of works on Bernstein¿s theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein¿s original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to second-year graduate students.

Informacija

Autorius: Pinaki Mondal
Serija: CMS/CAIMS Books in Mathematics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2021
Knygos puslapių skaičius: 368
ISBN-10: 3030751732
ISBN-13: 9783030751739
Formatas: 241 x 160 x 25 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „How Many Zeroes?: Counting Solutions of Systems of Polynomials via Toric Geometry at Infinity“

Būtina įvertinti prekę

Goodreads reviews for „How Many Zeroes?: Counting Solutions of Systems of Polynomials via Toric Geometry at Infinity“