Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.

Informacija

Autorius: Mark Goresky, Jayce Getz,
Serija: Progress in Mathematics
Leidėjas: Birkhäuser Basel
Išleidimo metai: 2012
Knygos puslapių skaičius: 272
ISBN-10: 3034803508
ISBN-13: 9783034803502
Formatas: 241 x 160 x 20 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change“

Būtina įvertinti prekę

Goodreads reviews for „Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change“